Evaluate
-\frac{175}{2}=-87.5
Share
Copied to clipboard
\int _{3}^{4}-3800+2550t-600t^{2}+50t^{3}\mathrm{d}t
Use the distributive property to multiply -40+10t by 95-40t+5t^{2} and combine like terms.
\int -3800+2550t-600t^{2}+50t^{3}\mathrm{d}t
Evaluate the indefinite integral first.
\int -3800\mathrm{d}t+\int 2550t\mathrm{d}t+\int -600t^{2}\mathrm{d}t+\int 50t^{3}\mathrm{d}t
Integrate the sum term by term.
\int -3800\mathrm{d}t+2550\int t\mathrm{d}t-600\int t^{2}\mathrm{d}t+50\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
-3800t+2550\int t\mathrm{d}t-600\int t^{2}\mathrm{d}t+50\int t^{3}\mathrm{d}t
Find the integral of -3800 using the table of common integrals rule \int a\mathrm{d}t=at.
-3800t+1275t^{2}-600\int t^{2}\mathrm{d}t+50\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 2550 times \frac{t^{2}}{2}.
-3800t+1275t^{2}-200t^{3}+50\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply -600 times \frac{t^{3}}{3}.
-3800t+1275t^{2}-200t^{3}+\frac{25t^{4}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply 50 times \frac{t^{4}}{4}.
1275\times 4^{2}-3800\times 4-200\times 4^{3}+\frac{25}{2}\times 4^{4}-\left(1275\times 3^{2}-3800\times 3-200\times 3^{3}+\frac{25}{2}\times 3^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{175}{2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}