Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{3}^{4}-3800+2550t-600t^{2}+50t^{3}\mathrm{d}t
Use the distributive property to multiply -40+10t by 95-40t+5t^{2} and combine like terms.
\int -3800+2550t-600t^{2}+50t^{3}\mathrm{d}t
Evaluate the indefinite integral first.
\int -3800\mathrm{d}t+\int 2550t\mathrm{d}t+\int -600t^{2}\mathrm{d}t+\int 50t^{3}\mathrm{d}t
Integrate the sum term by term.
\int -3800\mathrm{d}t+2550\int t\mathrm{d}t-600\int t^{2}\mathrm{d}t+50\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
-3800t+2550\int t\mathrm{d}t-600\int t^{2}\mathrm{d}t+50\int t^{3}\mathrm{d}t
Find the integral of -3800 using the table of common integrals rule \int a\mathrm{d}t=at.
-3800t+1275t^{2}-600\int t^{2}\mathrm{d}t+50\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 2550 times \frac{t^{2}}{2}.
-3800t+1275t^{2}-200t^{3}+50\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply -600 times \frac{t^{3}}{3}.
-3800t+1275t^{2}-200t^{3}+\frac{25t^{4}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply 50 times \frac{t^{4}}{4}.
1275\times 4^{2}-3800\times 4-200\times 4^{3}+\frac{25}{2}\times 4^{4}-\left(1275\times 3^{2}-3800\times 3-200\times 3^{3}+\frac{25}{2}\times 3^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{175}{2}
Simplify.