Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{5}+5x+6\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{5}\mathrm{d}x+\int 5x\mathrm{d}x+\int 6\mathrm{d}x
Integrate the sum term by term.
\int x^{5}\mathrm{d}x+5\int x\mathrm{d}x+\int 6\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{6}+5\int x\mathrm{d}x+\int 6\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{5x^{2}}{2}+\int 6\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
\frac{x^{6}}{6}+\frac{5x^{2}}{2}+6x
Find the integral of 6 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5^{6}}{6}+\frac{5}{2}\times 5^{2}+6\times 5-\left(\frac{2^{6}}{6}+\frac{5}{2}\times 2^{2}+6\times 2\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2664
Simplify.