Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+5x+8\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int 8\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int 8\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+5\int x\mathrm{d}x+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+8x
Find the integral of 8 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4^{3}}{3}+\frac{5}{2}\times 4^{2}+8\times 4-\left(\frac{2^{3}}{3}+\frac{5}{2}\times 2^{2}+8\times 2\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{194}{3}
Simplify.