Evaluate
\frac{18d}{\ln(3)}
Differentiate w.r.t. d
\frac{18}{\ln(3)}
Share
Copied to clipboard
\int 3^{x}d\mathrm{d}x
Evaluate the indefinite integral first.
d\int 3^{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
d\times \frac{3^{x}}{\ln(3)}
Use \int x^{d}\mathrm{d}d=\frac{x^{d}}{\ln(x)} from the table of common integrals to obtain the result.
\frac{d\times 3^{x}}{\ln(3)}
Simplify.
d\times 3^{3}\ln(3)^{-1}-d\times 3^{2}\ln(3)^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{18d}{\ln(3)}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}