Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. d
Tick mark Image

Similar Problems from Web Search

Share

\int 3^{x}d\mathrm{d}x
Evaluate the indefinite integral first.
d\int 3^{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
d\times \frac{3^{x}}{\ln(3)}
Use \int x^{d}\mathrm{d}d=\frac{x^{d}}{\ln(x)} from the table of common integrals to obtain the result.
\frac{d\times 3^{x}}{\ln(3)}
Simplify.
d\times 3^{3}\ln(3)^{-1}-d\times 3^{2}\ln(3)^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{18d}{\ln(3)}
Simplify.