Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-6x^{2}-2x+4\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -6x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 4\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-6\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-6\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{3}-2\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -6 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-2x^{3}-x^{2}+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -2 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}-2x^{3}-x^{2}+4x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3^{5}}{5}-2\times 3^{3}-3^{2}+4\times 3-\left(\frac{2^{5}}{5}-2\times 2^{3}-2^{2}+4\times 2\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{16}{5}
Simplify.