Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}-5x^{2}+6x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -5x^{2}\mathrm{d}x+\int 6x\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-5\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-5\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{5x^{3}}{3}+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -5 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{5x^{3}}{3}+3x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6 times \frac{x^{2}}{2}.
\frac{3^{4}}{4}-\frac{5}{3}\times 3^{3}+3\times 3^{2}-\left(\frac{2^{4}}{4}-\frac{5}{3}\times 2^{3}+3\times 2^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{5}{12}
Simplify.