Evaluate
\frac{1102749}{2}=551374.5
Share
Copied to clipboard
\int _{2}^{3}551368+3z-1\mathrm{d}z
Calculate 82 to the power of 3 and get 551368.
\int _{2}^{3}551367+3z\mathrm{d}z
Subtract 1 from 551368 to get 551367.
\int 551367+3z\mathrm{d}z
Evaluate the indefinite integral first.
\int 551367\mathrm{d}z+\int 3z\mathrm{d}z
Integrate the sum term by term.
\int 551367\mathrm{d}z+3\int z\mathrm{d}z
Factor out the constant in each of the terms.
551367z+3\int z\mathrm{d}z
Find the integral of 551367 using the table of common integrals rule \int a\mathrm{d}z=az.
551367z+\frac{3z^{2}}{2}
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z\mathrm{d}z with \frac{z^{2}}{2}. Multiply 3 times \frac{z^{2}}{2}.
551367\times 3+\frac{3}{2}\times 3^{2}-\left(551367\times 2+\frac{3}{2}\times 2^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1102749}{2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}