Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{2}^{3}551368+3z-1\mathrm{d}z
Calculate 82 to the power of 3 and get 551368.
\int _{2}^{3}551367+3z\mathrm{d}z
Subtract 1 from 551368 to get 551367.
\int 551367+3z\mathrm{d}z
Evaluate the indefinite integral first.
\int 551367\mathrm{d}z+\int 3z\mathrm{d}z
Integrate the sum term by term.
\int 551367\mathrm{d}z+3\int z\mathrm{d}z
Factor out the constant in each of the terms.
551367z+3\int z\mathrm{d}z
Find the integral of 551367 using the table of common integrals rule \int a\mathrm{d}z=az.
551367z+\frac{3z^{2}}{2}
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z\mathrm{d}z with \frac{z^{2}}{2}. Multiply 3 times \frac{z^{2}}{2}.
551367\times 3+\frac{3}{2}\times 3^{2}-\left(551367\times 2+\frac{3}{2}\times 2^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1102749}{2}
Simplify.