Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{x}+\frac{1}{\sqrt{x}}\mathrm{d}x
Evaluate the indefinite integral first.
\int \sqrt{x}\mathrm{d}x+\int \frac{1}{\sqrt{x}}\mathrm{d}x
Integrate the sum term by term.
\frac{2x^{\frac{3}{2}}}{3}+\int \frac{1}{\sqrt{x}}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2x^{\frac{3}{2}}}{3}+2\sqrt{x}
Rewrite \frac{1}{\sqrt{x}} as x^{-\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Simplify and convert from exponential to radical form.
\frac{2}{3}\times 3^{\frac{3}{2}}+2\times 3^{\frac{1}{2}}-\left(\frac{2}{3}\times 2^{\frac{3}{2}}+2\times 2^{\frac{1}{2}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
4\sqrt{3}-\frac{10\sqrt{2}}{3}
Simplify.