Evaluate
128
Share
Copied to clipboard
\int 80-4x\mathrm{d}x
Evaluate the indefinite integral first.
\int 80\mathrm{d}x+\int -4x\mathrm{d}x
Integrate the sum term by term.
\int 80\mathrm{d}x-4\int x\mathrm{d}x
Factor out the constant in each of the terms.
80x-4\int x\mathrm{d}x
Find the integral of 80 using the table of common integrals rule \int a\mathrm{d}x=ax.
80x-2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
80\times 20-2\times 20^{2}-\left(80\times 12-2\times 12^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
128
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}