Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{10}^{20}\left(x^{2}-1\right)e^{0x}\mathrm{d}x
Multiply 0 and 2 to get 0.
\int _{10}^{20}\left(x^{2}-1\right)e^{0}\mathrm{d}x
Anything times zero gives zero.
\int _{10}^{20}\left(x^{2}-1\right)\times 1\mathrm{d}x
Calculate e to the power of 0 and get 1.
\int _{10}^{20}x^{2}-1\mathrm{d}x
Use the distributive property to multiply x^{2}-1 by 1.
\int x^{2}-1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{20^{3}}{3}-20-\left(\frac{10^{3}}{3}-10\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{6970}{3}
Simplify.