Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{6}-x^{2}+7x-6\mathrm{d}x
To find the opposite of x^{2}-7x+6, find the opposite of each term.
\int -x^{2}+7x-6\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{2}\mathrm{d}x+\int 7x\mathrm{d}x+\int -6\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+7\int x\mathrm{d}x+\int -6\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+7\int x\mathrm{d}x+\int -6\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{7x^{2}}{2}+\int -6\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 7 times \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+\frac{7x^{2}}{2}-6x
Find the integral of -6 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{6^{3}}{3}+\frac{7}{2}\times 6^{2}-6\times 6-\left(-\frac{1^{3}}{3}+\frac{7}{2}\times 1^{2}-6\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{125}{6}
Simplify.