Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{3}-4x^{4}-3\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{3}\mathrm{d}x+\int -4x^{4}\mathrm{d}x+\int -3\mathrm{d}x
Integrate the sum term by term.
4\int x^{3}\mathrm{d}x-4\int x^{4}\mathrm{d}x+\int -3\mathrm{d}x
Factor out the constant in each of the terms.
x^{4}-4\int x^{4}\mathrm{d}x+\int -3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 4 times \frac{x^{4}}{4}.
x^{4}-\frac{4x^{5}}{5}+\int -3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -4 times \frac{x^{5}}{5}.
x^{4}-\frac{4x^{5}}{5}-3x
Find the integral of -3 using the table of common integrals rule \int a\mathrm{d}x=ax.
6^{4}-\frac{4}{5}\times 6^{5}-3\times 6-\left(1^{4}-\frac{4}{5}\times 1^{5}-3\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-4940
Simplify.