Evaluate
15660
Share
Copied to clipboard
\int 27t^{3}+162t^{2}+324t+216\mathrm{d}t
Evaluate the indefinite integral first.
\int 27t^{3}\mathrm{d}t+\int 162t^{2}\mathrm{d}t+\int 324t\mathrm{d}t+\int 216\mathrm{d}t
Integrate the sum term by term.
27\int t^{3}\mathrm{d}t+162\int t^{2}\mathrm{d}t+324\int t\mathrm{d}t+\int 216\mathrm{d}t
Factor out the constant in each of the terms.
\frac{27t^{4}}{4}+162\int t^{2}\mathrm{d}t+324\int t\mathrm{d}t+\int 216\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply 27 times \frac{t^{4}}{4}.
\frac{27t^{4}}{4}+54t^{3}+324\int t\mathrm{d}t+\int 216\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 162 times \frac{t^{3}}{3}.
\frac{27t^{4}}{4}+54t^{3}+162t^{2}+\int 216\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 324 times \frac{t^{2}}{2}.
\frac{27t^{4}}{4}+54t^{3}+162t^{2}+216t
Find the integral of 216 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{27}{4}\times 5^{4}+54\times 5^{3}+162\times 5^{2}+216\times 5-\left(\frac{27}{4}\times 1^{4}+54\times 1^{3}+162\times 1^{2}+216\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
15660
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}