Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{5}-3x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{5}\mathrm{d}x+\int -3x^{2}\mathrm{d}x
Integrate the sum term by term.
2\int x^{5}\mathrm{d}x-3\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{3}-3\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 2 times \frac{x^{6}}{6}.
\frac{x^{6}}{3}-x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
\frac{5^{6}}{3}-5^{3}-\left(\frac{1^{6}}{3}-1^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
5084
Simplify.