Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{4}x-\left(x^{2}-4x+4\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\int _{1}^{4}x-x^{2}+4x-4\mathrm{d}x
To find the opposite of x^{2}-4x+4, find the opposite of each term.
\int _{1}^{4}5x-x^{2}-4\mathrm{d}x
Combine x and 4x to get 5x.
\int 5x-x^{2}-4\mathrm{d}x
Evaluate the indefinite integral first.
\int 5x\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -4\mathrm{d}x
Integrate the sum term by term.
5\int x\mathrm{d}x-\int x^{2}\mathrm{d}x+\int -4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{5x^{2}}{2}-\int x^{2}\mathrm{d}x+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
\frac{5x^{2}}{2}-\frac{x^{3}}{3}+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{5x^{2}}{2}-\frac{x^{3}}{3}-4x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5}{2}\times 4^{2}-\frac{4^{3}}{3}-4\times 4-\left(\frac{5}{2}\times 1^{2}-\frac{1^{3}}{3}-4\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{2}
Simplify.