Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{4}x^{2}\left(\left(x^{4}\right)^{3}-21\left(x^{4}\right)^{2}+147x^{4}-343\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x^{4}-7\right)^{3}.
\int _{1}^{4}x^{2}\left(x^{12}-21\left(x^{4}\right)^{2}+147x^{4}-343\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\int _{1}^{4}x^{2}\left(x^{12}-21x^{8}+147x^{4}-343\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\int _{1}^{4}x^{14}-21x^{10}+147x^{6}-343x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2} by x^{12}-21x^{8}+147x^{4}-343.
\int x^{14}-21x^{10}+147x^{6}-343x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{14}\mathrm{d}x+\int -21x^{10}\mathrm{d}x+\int 147x^{6}\mathrm{d}x+\int -343x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{14}\mathrm{d}x-21\int x^{10}\mathrm{d}x+147\int x^{6}\mathrm{d}x-343\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{15}}{15}-21\int x^{10}\mathrm{d}x+147\int x^{6}\mathrm{d}x-343\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{14}\mathrm{d}x with \frac{x^{15}}{15}.
\frac{x^{15}}{15}-\frac{21x^{11}}{11}+147\int x^{6}\mathrm{d}x-343\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{10}\mathrm{d}x with \frac{x^{11}}{11}. Multiply -21 times \frac{x^{11}}{11}.
\frac{x^{15}}{15}-\frac{21x^{11}}{11}+21x^{7}-343\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply 147 times \frac{x^{7}}{7}.
\frac{x^{15}}{15}-\frac{21x^{11}}{11}+21x^{7}-\frac{343x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -343 times \frac{x^{3}}{3}.
-\frac{343x^{3}}{3}+21x^{7}-\frac{21x^{11}}{11}+\frac{x^{15}}{15}
Simplify.
-\frac{343}{3}\times 4^{3}+21\times 4^{7}-\frac{21}{11}\times 4^{11}+\frac{4^{15}}{15}-\left(-\frac{343}{3}\times 1^{3}+21\times 1^{7}-\frac{21}{11}\times 1^{11}+\frac{1^{15}}{15}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3515177736}{55}
Simplify.