Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{3\sqrt{x}}{2}+3x^{2}+1\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{3\sqrt{x}}{2}\mathrm{d}x+\int 3x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
\frac{3\int \sqrt{x}\mathrm{d}x}{2}+3\int x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
x^{\frac{3}{2}}+3\int x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply \frac{3}{2} times \frac{2x^{\frac{3}{2}}}{3}.
x^{\frac{3}{2}}+x^{3}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{\frac{3}{2}}+x^{3}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
4^{\frac{3}{2}}+4^{3}+4-\left(1^{\frac{3}{2}}+1^{3}+1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
73
Simplify.