Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 1+5x-x^{2}-4x-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 1\mathrm{d}x+\int 5x\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -4x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 1\mathrm{d}x+5\int x\mathrm{d}x-\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
x+5\int x\mathrm{d}x-\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x+\frac{5x^{2}}{2}-\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
x+\frac{5x^{2}}{2}-\frac{x^{3}}{3}-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
x+\frac{5x^{2}}{2}-\frac{x^{3}}{3}-2x^{2}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
x+\frac{5x^{2}}{2}-\frac{x^{3}}{3}-2x^{2}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
x+\frac{x^{2}}{2}-\frac{2x^{3}}{3}
Simplify.
3+\frac{3^{2}}{2}-\frac{2}{3}\times 3^{3}-\left(1+\frac{1^{2}}{2}-\frac{2}{3}\times 1^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{34}{3}
Simplify.