Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}+7x^{3}+2x^{2}+x+3\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int 7x^{3}\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x+7\int x^{3}\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}+7\int x^{3}\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{7x^{4}}{4}+2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 7 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{7x^{4}}{4}+\frac{2x^{3}}{3}+\int x\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{7x^{4}}{4}+\frac{2x^{3}}{3}+\frac{x^{2}}{2}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{5}}{5}+\frac{7x^{4}}{4}+\frac{2x^{3}}{3}+\frac{x^{2}}{2}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3^{5}}{5}+\frac{7}{4}\times 3^{4}+\frac{2}{3}\times 3^{3}+\frac{3^{2}}{2}+3\times 3-\left(\frac{1^{5}}{5}+\frac{7}{4}\times 1^{4}+\frac{2}{3}\times 1^{3}+\frac{1^{2}}{2}+3\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3236}{15}
Simplify.