Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2+3x-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 2\mathrm{d}x+\int 3x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 2\mathrm{d}x+3\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
2x+3\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x+\frac{3x^{2}}{2}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
2x+\frac{3x^{2}}{2}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
2\times 3+\frac{3}{2}\times 3^{2}-\frac{3^{3}}{3}-\left(2\times 1+\frac{3}{2}\times 1^{2}-\frac{1^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{22}{3}
Simplify.