Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -2x^{3}-x+4\mathrm{d}x
Evaluate the indefinite integral first.
\int -2x^{3}\mathrm{d}x+\int -x\mathrm{d}x+\int 4\mathrm{d}x
Integrate the sum term by term.
-2\int x^{3}\mathrm{d}x-\int x\mathrm{d}x+\int 4\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{4}}{2}-\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -2 times \frac{x^{4}}{4}.
-\frac{x^{4}}{2}-\frac{x^{2}}{2}+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-\frac{x^{4}}{2}-\frac{x^{2}}{2}+4x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{3^{4}}{2}-\frac{3^{2}}{2}+4\times 3-\left(-\frac{1^{4}}{2}-\frac{1^{2}}{2}+4\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-36
Simplify.