Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{x^{3}}+1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{\frac{3}{2}}\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
\frac{2x^{\frac{5}{2}}}{5}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{3}{2}}\mathrm{d}x with \frac{2x^{\frac{5}{2}}}{5}.
\frac{2x^{\frac{5}{2}}}{5}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2}{5}\times 3^{\frac{5}{2}}+3-\left(\frac{2}{5}\times 1^{\frac{5}{2}}+1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{18\sqrt{3}+8}{5}
Simplify.