Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\frac{6}{x}\right)^{2}\mathrm{d}x
Evaluate the indefinite integral first.
6^{2}\int \left(\frac{1}{x}\right)^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
6^{2}\left(-\frac{1}{x}\right)
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}.
-\frac{36}{x}
Simplify.
-36\times 3^{-1}+36\times 1^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
24
Simplify.