Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int y-\frac{1}{y}\mathrm{d}y
Evaluate the indefinite integral first.
\int y\mathrm{d}y+\int -\frac{1}{y}\mathrm{d}y
Integrate the sum term by term.
\int y\mathrm{d}y-\int \frac{1}{y}\mathrm{d}y
Factor out the constant in each of the terms.
\frac{y^{2}}{2}-\int \frac{1}{y}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}.
\frac{y^{2}}{2}-\ln(|y|)
Use \int \frac{1}{y}\mathrm{d}y=\ln(|y|) from the table of common integrals to obtain the result.
\frac{2^{2}}{2}-\ln(|2|)-\left(\frac{1^{2}}{2}-\ln(|1|)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3}{2}-\ln(2)
Simplify.