Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}-9x+\frac{61}{6}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -9x\mathrm{d}x+\int \frac{61}{6}\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-9\int x\mathrm{d}x+\int \frac{61}{6}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-9\int x\mathrm{d}x+\int \frac{61}{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{9x^{2}}{2}+\int \frac{61}{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -9 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}-\frac{9x^{2}}{2}+\frac{61x}{6}
Find the integral of \frac{61}{6} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2^{3}}{3}-\frac{9}{2}\times 2^{2}+\frac{61}{6}\times 2-\left(\frac{1^{3}}{3}-\frac{9}{2}\times 1^{2}+\frac{61}{6}\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-1
Simplify.