Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+\frac{1}{x^{4}}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int \frac{1}{x^{4}}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int \frac{1}{x^{4}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{1}{3x^{3}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{4}}\mathrm{d}x with -\frac{1}{3x^{3}}.
\frac{2^{3}}{3}-\frac{2^{-3}}{3}-\left(\frac{1^{3}}{3}-\frac{1^{-3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{21}{8}
Simplify.