Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{4^{x}}{\ln(4)}
Use \int x^{y}\mathrm{d}y=\frac{x^{y}}{\ln(x)} from the table of common integrals to obtain the result.
\frac{4^{x}}{2\ln(2)}
Simplify.
\frac{1}{2}\times 4^{2}\ln(2)^{-1}-\frac{1}{2}\times 4^{1}\ln(2)^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{6}{\ln(2)}
Simplify.