Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{2}2t^{9}-4t^{7}+2t^{5}\mathrm{d}t
Use the distributive property to multiply 2 by t^{9}-2t^{7}+t^{5}.
\int 2t^{9}-4t^{7}+2t^{5}\mathrm{d}t
Evaluate the indefinite integral first.
\int 2t^{9}\mathrm{d}t+\int -4t^{7}\mathrm{d}t+\int 2t^{5}\mathrm{d}t
Integrate the sum term by term.
2\int t^{9}\mathrm{d}t-4\int t^{7}\mathrm{d}t+2\int t^{5}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{10}}{5}-4\int t^{7}\mathrm{d}t+2\int t^{5}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{9}\mathrm{d}t with \frac{t^{10}}{10}. Multiply 2 times \frac{t^{10}}{10}.
\frac{t^{10}}{5}-\frac{t^{8}}{2}+2\int t^{5}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{7}\mathrm{d}t with \frac{t^{8}}{8}. Multiply -4 times \frac{t^{8}}{8}.
\frac{t^{10}}{5}-\frac{t^{8}}{2}+\frac{t^{6}}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{5}\mathrm{d}t with \frac{t^{6}}{6}. Multiply 2 times \frac{t^{6}}{6}.
\frac{2^{10}}{5}-\frac{2^{8}}{2}+\frac{2^{6}}{3}-\left(\frac{1^{10}}{5}-\frac{1^{8}}{2}+\frac{1^{6}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{981}{10}
Simplify.