Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x-\frac{1}{x^{2}}\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int -\frac{1}{x^{2}}\mathrm{d}x
Integrate the sum term by term.
\int x\mathrm{d}x-\int \frac{1}{x^{2}}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{2}-\int \frac{1}{x^{2}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{1}{x}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}. Multiply -1 times -\frac{1}{x}.
\frac{2^{2}}{2}+2^{-1}-\left(\frac{1^{2}}{2}+1^{-1}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1
Simplify.