Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-2x^{3}-x^{2}+2x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 2x\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-2\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-2\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -2 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}-\frac{x^{3}}{3}+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}-\frac{x^{3}}{3}+x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\frac{2^{5}}{5}-\frac{2^{4}}{2}-\frac{2^{3}}{3}+2^{2}-\left(\frac{1^{5}}{5}-\frac{1^{4}}{2}-\frac{1^{3}}{3}+1^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{19}{30}
Simplify.