Evaluate
\frac{308}{15}\approx 20.533333333
Quiz
Integration
5 problems similar to:
\int _ { 1 } ^ { 2 } ( x + x ^ { 2 } + x ^ { 4 } + x ^ { 5 } ) d x
Share
Copied to clipboard
\int x+x^{2}+x^{4}+x^{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x+\int x^{5}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{2}}{2}+\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x+\int x^{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\int x^{4}\mathrm{d}x+\int x^{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\int x^{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{6}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}.
\frac{2^{2}}{2}+\frac{2^{3}}{3}+\frac{2^{5}}{5}+\frac{2^{6}}{6}-\left(\frac{1^{2}}{2}+\frac{1^{3}}{3}+\frac{1^{5}}{5}+\frac{1^{6}}{6}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{308}{15}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}