Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x+x^{2}+x^{4}+x^{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x+\int x^{5}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{2}}{2}+\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x+\int x^{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\int x^{4}\mathrm{d}x+\int x^{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\int x^{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{6}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}.
\frac{2^{2}}{2}+\frac{2^{3}}{3}+\frac{2^{5}}{5}+\frac{2^{6}}{6}-\left(\frac{1^{2}}{2}+\frac{1^{3}}{3}+\frac{1^{5}}{5}+\frac{1^{6}}{6}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{308}{15}
Simplify.