Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 45t^{2}-2t^{3}\mathrm{d}t
Evaluate the indefinite integral first.
\int 45t^{2}\mathrm{d}t+\int -2t^{3}\mathrm{d}t
Integrate the sum term by term.
45\int t^{2}\mathrm{d}t-2\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
15t^{3}-2\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 45 times \frac{t^{3}}{3}.
15t^{3}-\frac{t^{4}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply -2 times \frac{t^{4}}{4}.
15\times 2^{3}-\frac{2^{4}}{2}-\left(15\times 1^{3}-\frac{1^{4}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{195}{2}
Simplify.