Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3t^{2}-t\mathrm{d}t
Evaluate the indefinite integral first.
\int 3t^{2}\mathrm{d}t+\int -t\mathrm{d}t
Integrate the sum term by term.
3\int t^{2}\mathrm{d}t-\int t\mathrm{d}t
Factor out the constant in each of the terms.
t^{3}-\int t\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 3 times \frac{t^{3}}{3}.
t^{3}-\frac{t^{2}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -1 times \frac{t^{2}}{2}.
2^{3}-\frac{2^{2}}{2}-\left(1^{3}-\frac{1^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{11}{2}
Simplify.