Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{2}4\left(x^{3}\right)^{2}+16x^{3}x+16x^{2}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x^{3}+4x\right)^{2}.
\int _{1}^{2}4x^{6}+16x^{3}x+16x^{2}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int _{1}^{2}4x^{6}+16x^{4}+16x^{2}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\int 4x^{6}+16x^{4}+16x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{6}\mathrm{d}x+\int 16x^{4}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrate the sum term by term.
4\int x^{6}\mathrm{d}x+16\int x^{4}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{7}}{7}+16\int x^{4}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply 4 times \frac{x^{7}}{7}.
\frac{4x^{7}}{7}+\frac{16x^{5}}{5}+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 16 times \frac{x^{5}}{5}.
\frac{4x^{7}}{7}+\frac{16x^{5}}{5}+\frac{16x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 16 times \frac{x^{3}}{3}.
\frac{16x^{3}}{3}+\frac{16x^{5}}{5}+\frac{4x^{7}}{7}
Simplify.
\frac{16}{3}\times 2^{3}+\frac{16}{5}\times 2^{5}+\frac{4}{7}\times 2^{7}-\left(\frac{16}{3}\times 1^{3}+\frac{16}{5}\times 1^{5}+\frac{4}{7}\times 1^{7}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{21956}{105}
Simplify.