Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{2}1+4y+4y^{2}\mathrm{d}y
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+2y\right)^{2}.
\int 1+4y+4y^{2}\mathrm{d}y
Evaluate the indefinite integral first.
\int 1\mathrm{d}y+\int 4y\mathrm{d}y+\int 4y^{2}\mathrm{d}y
Integrate the sum term by term.
\int 1\mathrm{d}y+4\int y\mathrm{d}y+4\int y^{2}\mathrm{d}y
Factor out the constant in each of the terms.
y+4\int y\mathrm{d}y+4\int y^{2}\mathrm{d}y
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}y=ay.
y+2y^{2}+4\int y^{2}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply 4 times \frac{y^{2}}{2}.
y+2y^{2}+\frac{4y^{3}}{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply 4 times \frac{y^{3}}{3}.
2+2\times 2^{2}+\frac{4}{3}\times 2^{3}-\left(1+2\times 1^{2}+\frac{4}{3}\times 1^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{49}{3}
Simplify.