Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x^{3}}{3}-\frac{3x^{2}}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{x^{3}}{3}\mathrm{d}x+\int -\frac{3x^{2}}{2}\mathrm{d}x
Integrate the sum term by term.
\frac{\int x^{3}\mathrm{d}x}{3}-\frac{3\int x^{2}\mathrm{d}x}{2}
Factor out the constant in each of the terms.
\frac{x^{4}}{12}-\frac{3\int x^{2}\mathrm{d}x}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply \frac{1}{3} times \frac{x^{4}}{4}.
\frac{x^{4}}{12}-\frac{x^{3}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -\frac{3}{2} times \frac{x^{3}}{3}.
\frac{2^{4}}{12}-\frac{2^{3}}{2}-\left(\frac{1^{4}}{12}-\frac{1^{3}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{9}{4}
Simplify.