Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\pi }{x^{2}}\mathrm{d}x
Evaluate the indefinite integral first.
\pi \int \frac{1}{x^{2}}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\pi \left(-\frac{1}{x}\right)
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}.
-\frac{\pi }{x}
Simplify.
-\pi \times 2^{-1}+\pi \times 1^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\pi }{2}
Simplify.