Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{2}\frac{x^{2}}{2x}\mathrm{d}x
Express \frac{\frac{x^{2}}{2}}{x} as a single fraction.
\int _{1}^{2}\frac{x}{2}\mathrm{d}x
Cancel out x in both numerator and denominator.
\int \frac{x}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{\int x\mathrm{d}x}{2}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{2}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{2^{2}}{4}-\frac{1^{2}}{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3}{4}
Simplify.