Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{2}\frac{\left(5v^{3}+1\right)v^{5}}{v^{4}}\mathrm{d}v
Factor the expressions that are not already factored in \frac{v^{5}+5v^{8}}{v^{4}}.
\int _{1}^{2}v\left(5v^{3}+1\right)\mathrm{d}v
Cancel out v^{4} in both numerator and denominator.
\int _{1}^{2}5v^{4}+v\mathrm{d}v
Expand the expression.
\int 5v^{4}+v\mathrm{d}v
Evaluate the indefinite integral first.
\int 5v^{4}\mathrm{d}v+\int v\mathrm{d}v
Integrate the sum term by term.
5\int v^{4}\mathrm{d}v+\int v\mathrm{d}v
Factor out the constant in each of the terms.
v^{5}+\int v\mathrm{d}v
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v^{4}\mathrm{d}v with \frac{v^{5}}{5}. Multiply 5 times \frac{v^{5}}{5}.
v^{5}+\frac{v^{2}}{2}
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v\mathrm{d}v with \frac{v^{2}}{2}.
\frac{2^{2}}{2}+2^{5}-\left(\frac{1^{2}}{2}+1^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{65}{2}
Simplify.