Evaluate
\frac{65}{2}=32.5
Share
Copied to clipboard
\int _{1}^{2}\frac{\left(5v^{3}+1\right)v^{5}}{v^{4}}\mathrm{d}v
Factor the expressions that are not already factored in \frac{v^{5}+5v^{8}}{v^{4}}.
\int _{1}^{2}v\left(5v^{3}+1\right)\mathrm{d}v
Cancel out v^{4} in both numerator and denominator.
\int _{1}^{2}5v^{4}+v\mathrm{d}v
Expand the expression.
\int 5v^{4}+v\mathrm{d}v
Evaluate the indefinite integral first.
\int 5v^{4}\mathrm{d}v+\int v\mathrm{d}v
Integrate the sum term by term.
5\int v^{4}\mathrm{d}v+\int v\mathrm{d}v
Factor out the constant in each of the terms.
v^{5}+\int v\mathrm{d}v
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v^{4}\mathrm{d}v with \frac{v^{5}}{5}. Multiply 5 times \frac{v^{5}}{5}.
v^{5}+\frac{v^{2}}{2}
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v\mathrm{d}v with \frac{v^{2}}{2}.
\frac{2^{2}}{2}+2^{5}-\left(\frac{1^{2}}{2}+1^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{65}{2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}