Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{4\sqrt[3]{x}}{3}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{4}{3}\int \sqrt[3]{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{4}{3}\times \frac{3x^{\frac{4}{3}}}{4}
Rewrite \sqrt[3]{x} as x^{\frac{1}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{3}}\mathrm{d}x with \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplify.
x^{\frac{4}{3}}
Simplify.
2^{\frac{4}{3}}-1^{\frac{4}{3}}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2\sqrt[3]{2}-1
Simplify.