Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{3}{t^{4}}\mathrm{d}t
Evaluate the indefinite integral first.
3\int \frac{1}{t^{4}}\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
-\frac{1}{t^{3}}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{t^{4}}\mathrm{d}t with -\frac{1}{3t^{3}}. Multiply 3 times -\frac{1}{3t^{3}}.
-2^{-3}+1^{-3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7}{8}
Simplify.