Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{3}+\frac{y}{6}\mathrm{d}y
Evaluate the indefinite integral first.
\int \frac{1}{3}\mathrm{d}y+\int \frac{y}{6}\mathrm{d}y
Integrate the sum term by term.
\int \frac{1}{3}\mathrm{d}y+\frac{\int y\mathrm{d}y}{6}
Factor out the constant in each of the terms.
\frac{y}{3}+\frac{\int y\mathrm{d}y}{6}
Find the integral of \frac{1}{3} using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{y}{3}+\frac{y^{2}}{12}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply \frac{1}{6} times \frac{y^{2}}{2}.
\frac{1}{3}\times 2+\frac{2^{2}}{12}-\left(\frac{1}{3}\times 1+\frac{1^{2}}{12}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7}{12}
Simplify.