Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x^{2}}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{\int x^{2}\mathrm{d}x}{4}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{3}}{12}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{16^{3}}{12}-\frac{1^{3}}{12}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1365}{4}
Simplify.