Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int k^{9}\mathrm{d}k
Evaluate the indefinite integral first.
\frac{k^{10}}{10}
Since \int k^{k}\mathrm{d}k=\frac{k^{k+1}}{k+1} for k\neq -1, replace \int k^{9}\mathrm{d}k with \frac{k^{10}}{10}.
\frac{10^{10}}{10}-\frac{1^{10}}{10}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9999999999}{10}
Simplify.