Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{\frac{\pi }{2}}\left(-x-\left(-1\right)\right)\left(2x-11\right)\mathrm{d}x
To find the opposite of x-1, find the opposite of each term.
\int _{1}^{\frac{\pi }{2}}\left(-x+1\right)\left(2x-11\right)\mathrm{d}x
The opposite of -1 is 1.
\int _{1}^{\frac{\pi }{2}}-2x^{2}+11x+2x-11\mathrm{d}x
Apply the distributive property by multiplying each term of -x+1 by each term of 2x-11.
\int _{1}^{\frac{\pi }{2}}-2x^{2}+13x-11\mathrm{d}x
Combine 11x and 2x to get 13x.
\int -2x^{2}+13x-11\mathrm{d}x
Evaluate the indefinite integral first.
\int -2x^{2}\mathrm{d}x+\int 13x\mathrm{d}x+\int -11\mathrm{d}x
Integrate the sum term by term.
-2\int x^{2}\mathrm{d}x+13\int x\mathrm{d}x+\int -11\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{2x^{3}}{3}+13\int x\mathrm{d}x+\int -11\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
-\frac{2x^{3}}{3}+\frac{13x^{2}}{2}+\int -11\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 13 times \frac{x^{2}}{2}.
-\frac{2x^{3}}{3}+\frac{13x^{2}}{2}-11x
Find the integral of -11 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{2}{3}\times \left(\frac{1}{2}\pi \right)^{3}+\frac{13}{2}\times \left(\frac{1}{2}\pi \right)^{2}-11\times \frac{1}{2}\pi -\left(-\frac{2}{3}\times 1^{3}+\frac{13}{2}\times 1^{2}-11\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{\pi ^{3}}{12}+\frac{13\pi ^{2}}{8}-\frac{11\pi }{2}+\frac{31}{6}
Simplify.