Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}-6x^{2}+9x+1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -6x^{2}\mathrm{d}x+\int 9x\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x+9\int x\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-6\int x^{2}\mathrm{d}x+9\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-2x^{3}+9\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -6 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-2x^{3}+\frac{9x^{2}}{2}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 9 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-2x^{3}+\frac{9x^{2}}{2}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4^{4}}{4}-2\times 4^{3}+\frac{9}{2}\times 4^{2}+4-\left(\frac{\left(\frac{1}{2}\right)^{4}}{4}-2\times \left(\frac{1}{2}\right)^{3}+\frac{9}{2}\times \left(\frac{1}{2}\right)^{2}+\frac{1}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{679}{64}
Simplify.