Evaluate
\frac{1}{72}\approx 0.013888889
Share
Copied to clipboard
\int _{0\times 5}^{1}p^{7}-p^{8}\mathrm{d}p
Use the distributive property to multiply p^{7} by 1-p.
\int _{0}^{1}p^{7}-p^{8}\mathrm{d}p
Multiply 0 and 5 to get 0.
\int p^{7}-p^{8}\mathrm{d}p
Evaluate the indefinite integral first.
\int p^{7}\mathrm{d}p+\int -p^{8}\mathrm{d}p
Integrate the sum term by term.
\int p^{7}\mathrm{d}p-\int p^{8}\mathrm{d}p
Factor out the constant in each of the terms.
\frac{p^{8}}{8}-\int p^{8}\mathrm{d}p
Since \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} for k\neq -1, replace \int p^{7}\mathrm{d}p with \frac{p^{8}}{8}.
\frac{p^{8}}{8}-\frac{p^{9}}{9}
Since \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} for k\neq -1, replace \int p^{8}\mathrm{d}p with \frac{p^{9}}{9}. Multiply -1 times \frac{p^{9}}{9}.
\frac{1^{8}}{8}-\frac{1^{9}}{9}-\left(\frac{0^{8}}{8}-\frac{0^{9}}{9}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{72}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}