Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0\times 5}^{1}p^{7}-p^{8}\mathrm{d}p
Use the distributive property to multiply p^{7} by 1-p.
\int _{0}^{1}p^{7}-p^{8}\mathrm{d}p
Multiply 0 and 5 to get 0.
\int p^{7}-p^{8}\mathrm{d}p
Evaluate the indefinite integral first.
\int p^{7}\mathrm{d}p+\int -p^{8}\mathrm{d}p
Integrate the sum term by term.
\int p^{7}\mathrm{d}p-\int p^{8}\mathrm{d}p
Factor out the constant in each of the terms.
\frac{p^{8}}{8}-\int p^{8}\mathrm{d}p
Since \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} for k\neq -1, replace \int p^{7}\mathrm{d}p with \frac{p^{8}}{8}.
\frac{p^{8}}{8}-\frac{p^{9}}{9}
Since \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} for k\neq -1, replace \int p^{8}\mathrm{d}p with \frac{p^{9}}{9}. Multiply -1 times \frac{p^{9}}{9}.
\frac{1^{8}}{8}-\frac{1^{9}}{9}-\left(\frac{0^{8}}{8}-\frac{0^{9}}{9}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{72}
Simplify.