Evaluate
7962.5
Share
Copied to clipboard
\int _{0.5}^{1}4900\left(4-y\right)\mathrm{d}y
Multiply 9800 and 0.5 to get 4900.
\int _{0.5}^{1}19600-4900y\mathrm{d}y
Use the distributive property to multiply 4900 by 4-y.
\int 19600-4900y\mathrm{d}y
Evaluate the indefinite integral first.
\int 19600\mathrm{d}y+\int -4900y\mathrm{d}y
Integrate the sum term by term.
\int 19600\mathrm{d}y-4900\int y\mathrm{d}y
Factor out the constant in each of the terms.
19600y-4900\int y\mathrm{d}y
Find the integral of 19600 using the table of common integrals rule \int a\mathrm{d}y=ay.
19600y-2450y^{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -4900 times \frac{y^{2}}{2}.
19600\times 1-2450\times 1^{2}-\left(19600\times 0.5-2450\times 0.5^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
7962.5
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}