Skip to main content
Evaluate
Tick mark Image

Share

\int _{0.5}^{1}4900\left(4-y\right)\mathrm{d}y
Multiply 9800 and 0.5 to get 4900.
\int _{0.5}^{1}19600-4900y\mathrm{d}y
Use the distributive property to multiply 4900 by 4-y.
\int 19600-4900y\mathrm{d}y
Evaluate the indefinite integral first.
\int 19600\mathrm{d}y+\int -4900y\mathrm{d}y
Integrate the sum term by term.
\int 19600\mathrm{d}y-4900\int y\mathrm{d}y
Factor out the constant in each of the terms.
19600y-4900\int y\mathrm{d}y
Find the integral of 19600 using the table of common integrals rule \int a\mathrm{d}y=ay.
19600y-2450y^{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -4900 times \frac{y^{2}}{2}.
19600\times 1-2450\times 1^{2}-\left(19600\times 0.5-2450\times 0.5^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
7962.5
Simplify.