Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 12t^{2}-30t+12\mathrm{d}t
Evaluate the indefinite integral first.
\int 12t^{2}\mathrm{d}t+\int -30t\mathrm{d}t+\int 12\mathrm{d}t
Integrate the sum term by term.
12\int t^{2}\mathrm{d}t-30\int t\mathrm{d}t+\int 12\mathrm{d}t
Factor out the constant in each of the terms.
4t^{3}-30\int t\mathrm{d}t+\int 12\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 12 times \frac{t^{3}}{3}.
4t^{3}-15t^{2}+\int 12\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -30 times \frac{t^{2}}{2}.
4t^{3}-15t^{2}+12t
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}t=at.
4\times 2^{3}-15\times 2^{2}+12\times 2-\left(4\times 0,5^{3}-15\times 0,5^{2}+12\times 0,5\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-6,75
Simplify.