Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 18t^{2}+\sqrt{t}\mathrm{d}t
Evaluate the indefinite integral first.
\int 18t^{2}\mathrm{d}t+\int \sqrt{t}\mathrm{d}t
Integrate the sum term by term.
18\int t^{2}\mathrm{d}t+\int \sqrt{t}\mathrm{d}t
Factor out the constant in each of the terms.
6t^{3}+\int \sqrt{t}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 18 times \frac{t^{3}}{3}.
6t^{3}+\frac{2t^{\frac{3}{2}}}{3}
Rewrite \sqrt{t} as t^{\frac{1}{2}}. Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{\frac{1}{2}}\mathrm{d}t with \frac{t^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
6x^{3}+\frac{2}{3}x^{\frac{3}{2}}-\left(6\times 0^{3}+\frac{2}{3}\times 0^{\frac{3}{2}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
6x^{3}+\frac{2x^{\frac{3}{2}}}{3}
Simplify.